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QUALITATIVE ANALYSIS OF ELECTRO-HYDRODYNAMIC CHARACTERISTICS 
OF WEAKLY CONDUCTING FLUIDS* 

V.V. GOGOSOV, G.A. SHAPOSHNIKOVA and 1u.D. SHIKHMURZAEV 

A motion of weakly conducting fluids such as various type electrolytes, petroleum, 
petroleum products, etc., is investigated. The difficulties encountered in the 
course of describing such media arise, to begin with, from the presence of the 
electrochemical reactions of dissociation, ionisation and recombination which have 
significant effect on the distribution of the electrodynamic parameters /l/; the 
rate of reaction is determined not only by the temperature and concentrationofthe 
particles, but also by the electric field strength /2,3/. Secondly, since the 
media in question are weakly conducting, they can therefore form and retainvolume 
charge over long periods, the charge determining, in general, the electric field 
distribution. 

A system of equations is written for the weakly conducting electrolyte fluid of nature 
in the presence of electrochemical dissociation and recombination reactions. The motion of 
the neutral particles is neglected. The influence of the electric field on the ratesofthese 
reactions is taken into account. It is shown that for a wide class of fluids the conducting 
fluid is quasineutral when the electrochemical reactions are equilibrium reactions. When the 
ratio of the temperature of the medium to the product of absolute magnitude of the ionic 
charge and characteristic electric potential difference is small, then terms proportional to 
the concentration gradients can be neglected in the equations for the concentrationsofcharg- 
ed particles and diffusion equations everywhere except in the narrow layers near the bound- 
aries. A complete qualitative analysis of the integral curves of such simplified equations 
in the phase plane is carried out for the one-dimensional case. Integral curves are found, 
corresponding to the solutions of the boundary value problems under various boundary condi- 
tions. The boundary conditions at the solid wall-electrolyte interface are discussed. Cases 
are shown in which the boundary conditions can be formulated for the simplified system of 
equations on the boundaries of the diffusion layers external to the electrodes. The results 
are used to obtain an analytic solution for the problem of electrolytic cell with flat elec- 
trodes. 

1. System of equations for weakly conducting fluids. We shall assume that the 
weakly conducting fluid represents a multicomponent mixture of nonelectrolyte liquids of 
nature, neutral electrolyte molecules and singly charged anions and cations. Electrochemical 
dissociation and recombination reactions can take place in this mixture. We shall deal with 
the liquids in which the concentration of charged particles is low, so that the effect of the 
ions on the motion of the neutral molecules can be neglected. 

We assume that the concentration n,*, velocity of the neutral molecules II* and temper- 
ature T in the energy units are all known. The effect of the reactions on the concentration 
of neutral molecules of the electrolyte is neglected. The equations describing the events 
taking place in the medium in question have the form (a = $, - and the indices +, - and a 
denote, respectively, the parameters associated with the positive and negative ions and the 
neutral particles) : 

an,* 
at + divj,* = w*, o* = kdn,* exp A* 1/F - k,n+*n_* (1.1) 

j,* = - D,*Vn,* + n,*b,*E* + n,*u*; A* = Ze”/y(TE’l~) (1.2) 

div E* = 4neE-’ (n+* - n_*), rot E* = 0 (1.3) 

Here n,* denotes the volume concentration, i.e. the number of particles per unit volume, j,*, 
Da*, b,* is the stream density, diffusion and mobility coefficients of the a-components, a = 
+, --; b+* > 0, b_* < 0; o* are the volume densities of the ion sources and sinks, kd and k, are 
the dissociation and recombination coefficients, E* is the electric field strength, e is the 
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charge of a proton and E is the dielectric permeability of the electrolyte. The expression 
for the sources appearing in the right-hand sides of the equations of continuity (1.1) describ- 

ing the dissociation and recombination processes was given in /3/. 

2. Reducing the equations to dimensionless form. 
brium and conditions of quasineutrality. 

Electrochemical equili- 
Substituting (1.2) into (1.1) and assuming 

thattheprocess is stationary and II * 7 0. we write the system of equations (l.l)- (1.3) in the 
dimensionless form (the zero subscript denotes the characteristic values of the parameters used 

as unit values, f* is the radius vector and 1, is the characteristic dimension of the problem) 

--6D,& + tiiv rr,h,E 2 C-'I~, 0) Ii e\lj il I/77 - n+n_ (2.1) 

5 div E a (I/+ - II_). rot E _ I). j, - 611, TtI, ~ ft,h,I< (2.2) 

The parameter ~-=T,;'Q represents the ratio of the characteristic time t, = L!b,E,, of transport 

of ions by electric field to characteristic time ed = L2i D, of diffusive transport of ions, 

and the parameter 5 : T,,,/z, represents the ratio of the characteristic time of change in the 

ionic concentration caused by the electrochemical reactions T,,, k,-'rr,-* , to T,. The para- 

meter A is the ratio of the change in the energy of dissociation of the molecules in the 

characteristic electric field to the characteristic.energy of thermal motion /3/, k is the 

ratio of the dissociation rate unrelated to the presence of electric field to the recombina- 

tion rate, and a is a characteristic parameter of the elctrolyte independent of the process 

in question. 

The conditions of electrochemical equilibrium under which the ion source and sink inten- 

sities in the equations of continuity (2.1) can be assumed equal, are written as follows: 

SE -= T,/, i T,l < 1, j :m TCii II ZF eg 1 (2.4) 

In this case, neglecting the left-hand part in (2.1), we obtain a reaction connecting the ion 

concentrations with the electric field strength, valid everywhere exceptperhaps the narrow 

layers in the "external" region 

n+n_ = k esp A I/,?? (2.5) 

Assuming that the concentrations n, and n_ are of the same order, we can obtain from (2.5) 
the estimates for the order of the magnitude of the concentration ng relative to the electric 

field strength valid, as implied by (2.4), at sufficiently high and low valuesofthe electric 

field strength. 

In majority of known cases a zz 0 (1). In particular, when the relation connecting the 

recombination coefficient k, with ionic mobility h, and dielectric permeability E is describ- 

ed by the Langevin formula k,= 8neb,ie, the parameter a =0.5. In this case the first equation 

of (2.2) and second inequality of (2.4) together yield n+-n_. Therefore the following asser- 

tion holds: in the presence of electrochemical equilibrium the conducting fluidisquasineutral 

everywhere except perhaps narrow layers. 

3. Simplifying the system of equations. Using the Einstein formula and introduc- 

ing A9 = E,,L we can write the parameter 6 in the form 6-T '(eAcp). We can always give the 

value of the characteristic potential difference for which 6((l. Thus, when A(& ~~ IH and the 

temperature is 300 H , the parameter 6 z IOP. When S<l , the distribution of the concen- 

trations and electric field can be described everywhere, except in the narrow diffusionlayers, 

by the following system of equations: 

In the case 

between the 
dimensional 
en&&" and 

0; here and 

5 div n,b,E k exp A I/‘z - n+n_ (3.1) 

5 dir E = a (71, - II_), j, - n,b,E, rot E = 0 (3.2) 

when all parameters depend on a single Cartesian coordinate %, the difference 

equations (3.1) for a= i and a= - can be integrated. Introducing the total 

'* J and dimensionless j current with help of the formulas j* = e(j+* _ j_*), j ~_ j* / 
using the second equation of (3.2), we can write (ix= i. BX -< E, i, =i, = E, E, ~7 

henceforth we assume, without loss of generality, that b+* 7 ! b_* ! -= b,) 

j = (n, t n_) E (3.3) 



341 

In the one-dimensional case the closed system of equations consists of the equation (3.3) and 
equations 

dn+E 
E- ds 

=kexpAv/E-n+n_, Eg=a(n+-n_) (3.4) 

4. Qualitative investigation of the system of equations in the phasespace. 
From (3.3) and (3.4) we can obtain the equation for the curves in the phase planes En(n= n*) 
as well as equations describing the variation of electric field E and concentrations nf along 
the x-coordinate 

dn 

dE= 
n’E(Z-Z2a)-fl;(1--)+kEexpA~~ 

aE (2nE - j) 
(4.1) 

dE 
dz= 

a (2n+E - i) 
Ee 

= a (i - 2n_E) 
4E (4.2) 

a% - + n*‘E (1 - 2a) - n*; (1 - a) + kE exp A jo 

ds- - 4E’ 
(4.3) 

From (4.1) and (4.2) we see that the phase patterns in the planes En+andEn_coincide, and 
phase velocities of the points are equal in magnitude and opposite in direction. Figs.l-4 
show, for definiteness, the phase planes En+ and the direction of motion along the integral 

curves is indicated by arrows. Let us introduce the notation 

L (n, E) = n”E (1 - 2~) - nj (1 - a) + kE exp A f?? 
L, (n, E) = 2nE - j, L, (n, E) = nE - j 

(4.4) 

Fig.1 

Fig.3 

Fig.2 

Fig.4 

In what follows, the curves L(n, 
E) = 0, L, (n, E) = 0, Lz (n, E) = 0 are 
denoted by L",L,O and‘L,” respect- 
ively. The line L,” represents 
the isocline of the vertical tan- 
gents and is a hyperbola with the 
asymptotes represented by the co- 
ordinate axes. The equation of 
this line togetherwith (3.3) imply 
that n+= n_ on this line. We shall 
call L,O the quasineutrality line. 
We note that when a+ 1, the axis 

E = 0 is also isocline of the 
vertical tangents. The curve L,’ 
is a hyperbola lying above L," and 
possessing the same asymptotes. 
The segments of the phase curves 
lying above the line LzO have no 
physical meaning since, according 
to (3.3), when n*>jlE we have 
a~< 0. The curve L” at E # 0 is 
an isocline of the horizontal tan- 
gents. It intersects at any value 
of parameter a the line &' atthe 
point N, which is a saddle-type 
singularity of equation (4.1) with 
the coordinates EN (j), n,v, where 

EN(~) is a root of the equation 

In Fig.1, which corresponds 
to the case a<l, the dashed de- 
pict the line L,” which also pas- 
ses through the point Non which 
the concentrations n, and n_' and 
electric field all satisfy the 
condition of electrochemical equil- 
ibrium and the Ohm'sLaw,represent- 
ed by the formulas (2.5) and (2.3) 
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respectively. The integral curves of the phase plane are divided by four separatrices emerg- 
ing from the saddle point ,V, into four families. We shall denote the families of the phase 
curves intersecting the line L," above and below the saddle point ;Vby S, and s, respectively, 

and the families not intersecting the line L," and lying above and below it by S, and S,.The 
separatrix separating the families s, and s, is shown in Fig.1 by a dashed line. 

4.1. Case a<l. The phase pattern is shown in Fig.1. The coordinate originis a node- 

typesingularityand the integral curves come at this point into tangential contact with the 

straight line IL = kE /j(l - 2~). The line L’ passes through the coordinate origin and saddle 
point N. The abscissa of the point at which the curve L” has a vertical tangent satisfies 

the equation 

j' (1 - a)' m: 4kE” (1 - 2~) esp A J/E’ 

The point lies above :V and tends to N as a+ 0. The dependence of the asymptotics of theupper 

and lower branch of 1,' on a as E-+() is, in its principal term, 

n+j(l+~a)/E and r~+kE(l~ta)lj 

Outside the a-neighborhood of the curve L” the integral curves become almost vertical dnldE 
- a-‘. Here and henceforth under the terma-neighborhood of the curve f(r, Y)= 0 we under- 

stand the geometrical position of the points the coordinates of which satisfy the condition 

If (x3 Y) ! 6 cc. 
From (4.1) it follows that the parts of the integral curves lying in the a-neighborhood 

of the line L” along which the variation AE - 1 and An - 1, have the corresponding orderofthe 

function L(n,E) - a. When a+O, the curve 1," becomes the line L,“. The behavior of the 

lines L,’ and L," is independent of the parameter a. The line L,” passes through the sad- 

dle point N, has a vertical tangent at this point, and lies in the an(j - 2nE)-neighborhood 

of the line L”. A quasiequilibrium mode of the electrochemical volume reactions corresponds, 

with the accuracy of up to terms of order a, to the segments of the integral curves passing 

through the a-neighborhood of the line Los, with n(j - 2nE)- 1. Despite the fact that the 

quasineutrality is absent from everywhere outside the line L,", the result obtained does not 

contradict, when E<a< I, the assertion of Sect.2, since as shall show below, the flow 

corresponding to the segments of the integral curves in question occurs not in the "external" 

region, but in the narrow boundary layers. 

4.1.1. Let us inspect the behavior of the parameters n+ and Ein the physical ,x:nf and 

zE planes. From (4.1) it follows that in the a-neighborhood of the line L“ the increment 

An - AE and outside it AE - aAn. This, together with (4.2) and (4.3) imply that on moving 

alongthesegments of the integral curves lying in the a,-neighborhood of L”, the variation 

innand E in the physical xz and xE planes by a quantity of the order of unity takes place 

overthe lengths AX,, - Bxs- A'x- Ea-'. In the course of deriving this estimate we assumed 

thatthequantity L(n,E) cannot be smaller than a along the integral curve passing through 

the a-neighborhood of the line L”. Indeed, if L(n,E)- ~((a, then An - AExa-'. When An - 1, 

AE - ax-'%1 , the integral curve becomes almost horizontal and does not follow L" since 

the slope of L” is different from zero everywhere. 

When E<a((i , the segments of the phase curves in question have the corresponding 

lengths AZ - Ea-'< 1 in the physical planes. They represent the boundary layers, so that 

these segments of the integral curves cannot describe the solution of the boundary value 

problem formulated on the segment (0.1). This also applies to the segments of integralcurves 

lying outside the a-neighborhood of the line Lo and having the corresponding lengths of the 

order of E; on the physical zn and xE planes when An - 1, AE - a. The segments of the phase 
curves with corresponding lengths Ax - 1 on the physical planes when c<a<(l, lie only in 

the small neighborhood of the saddle point N. Indeed, the system of equations (4.2), (4.3) 

linearized in the small neighborhood of the point N can be reduced by nondegenerate linear 

change of variables to the form (Jis the Jacobian of the transformation) 

Jd”=tl, J&x-u J= 
dr dcz 

1 m J&s’+ bc 
E=“J”+J 

-i_u.+ 
bJ2 aJ-’ v+EN, n=Tu+++nN 

bJ 

2cmN 
a=-, b= 14 (a - 1) + ‘K&l Q 

tee %E, 

, ,=2" 

5 

Integrating the first equation of this system we obtain 

Jln/;+&z,-zI 
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In the new variables the point N has a corresponding saddle at the coordinate origin, with 
the asymptotics coinciding with the coordinate axes. The last equation implies that by choos- 

ing a phase curve in the UII -plane passing near the coordinate origin so that the value of 
the coordinate IG at the entry to the neighborhood of the coordinate origin, denoted by U(XI) I 
is sufficiently small, we can attain an arbitrarily Iarge value of 1s lu(duh)I. (The quantity 
w.(~z) denotes the value of coordinate w at the exit from the neighborhood and will obviouslybe 
of the order of the circle radius). Consequently we can always choose the phase curve in such 
a manner that its segment lying in some small neighborhood of the coordinate origin will have 
a corresponding, predetermined length in the physic1 plane. 

Thus we have shown that when!.< a< 1, a solution of the boundary value problem on the 
interval’ [O,i] can be represented by a quasineutral electrochemical equilibrium mode, deviat- 
ing from the equilibrium inside narrow Layers. When a& E<l, the quantities AX can be of 
the order of unity not only in the neighborhood of the singularity NI but also in the W- 
neighborhood of the line Lo. The integral curves which do not pass near the singularity 1%' 
can also serve as solutions of the boundary value problem on the interval [O,ll.. In this case 

the segments of the phase curves lying outside the a-neighborhood of the line L” have the 
corresponding boundary layers with thickness of the order of $.. When EdI, then in the 
present case (a<%) as well as in the cases discussed below in which the parameter a is not 
small, the segments of any integral curves can serve as a solution of the problem on the in- 
terval 10, 11. 

4.1.2. Integral curves belonging to family S1 emerge from the coordinate origin, pass 
above the line L” through its a-neighborhood, then verge away from it and move almost vert- 
ically dn / dE - a-‘, making a vertical tangential contact pith the line Lx', to the upper 
branch of the line Lo. The curves cannot intersect L” and continue to move along it in its 
a-neighborhood, gradually departing from it with increasing slope of Lo. When E-+0, the 

upper branch of L" intersects the curve L,” and tends asymptotically to thehyperbola n+ = 
j(1 i- a)/ E, and the phase curves belonging to S, tend to L,“‘ asymptotically without intersec- 
tion. The lines belonging to S, emerge from L2', move towards Lo with the tangent to it in 
almost vertical. direction, intersect it and continue along it within its a-neighborhood. As 
the slope of Lo increases they leave its a-neighborhood and tend asymptotically from below 
to the line L,"'. The lines belonging to family S1 progress in the a-neighborhood of the 
lower branch of L", intersect L" and move almost vertically to the intersection withtheaxis 
n, = 0 _ The lines of family S, emerge from the line r~+ = 0 and move almost vertically, up 

to the line 1~" intersecting L,“on the way. 

4.2. Case a= 0.5. The case corresponds to the Langevin relation connecting the coef- 
ficients of recombination, mobility and dielectric permeability. The phase pattern is shown 
in Fig.2. The line L" passes through the coordinate origin into the saddle point%N and inter- 
sects the line L,” . The coordinate origin is a degenerate node. The integral curves make a 
tangentialcontactwith the axis E = 0. The upper branches of the curves belonging to St and 
&tend asymptotically to the line L," as E+ 0, In the present case and in further cases 

where ais not small, a reasoning analogous to that of Sect.4.1 can show that when E<l,then 
thesegmentsof the phase curves which have the corresponding Lengths in the physical planesof 
theorderof unity, lie in some small neighborhood of the point N. Thus outside the narrow,! 
-layers the parameters s+, n_ and E are connected in this case by the conditions of electro- 
chemical equilibrium and quasineutrality, which agrees with the assertion made in Sect.2. 

Case a= 1 fFig.3). The line Lo passes throught the point with coordinates O,n and 
through N. The singularity at the coordinate origin degenerates and the phase curves belong- 
ing to S, are transformed near it into a family of parallel straight lines. The lines belong- 
ing to family S, emerge not from the coordinate origin, but from the points on the axis E = 0 
lying above the point with coordinates 0,fl. when E-to, the upper branches of the curves 
belonging to S, and Sz tend asymptotically to the hyperbolas of the form n, = j J E- const (the 
constant depending on the line under consideration). 

Case a> 1 (Fig-B). The line L" emerges from L,", intersects the line L," at the 
saddle point Nand tends asymptotically, as E-0 , to the hyperbola n, = j(2 - a-‘)f 4E from 
above (the principal term describes the dependence of the asymptote on a ). The coordinate 
origin is a saddle singularity with the local asymptotes E = 0 and n =--126/j@ - 1). The 
upper and lower branches of the curves belonging to S, tend to infinity as E-+0. The lines 
belonging to S3 emerge fromthe axis s+ = 0 and progress to the intersection with L,O. Those 
which approach the line L" to the left of its minimum intersect it and continue along it in 
the downward direction, intersect it once again and then move upwards to intersect the line 
L,". The lines which approach L” to the right of its minimum, do not intersect it. 
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4.3. Let us inspect the values of the parameters )'+, 'L_ and bat some cross section z -~ 2'. 
The values of II+ and n_ are connected by the relation (3.3), therefore the coordinates of the 
points in the En, and En_ planes corresponding to the values of the parameters at the cross 
section z 7 I' and equal to each other only on the line I,,' where II+ (z') II_ (~‘1. As we showed 
before, the phase patterns in the En+ and En_ planes coincide, differing from each other only 
in the direction of the moiton. Let us consider, on the Eu phase plane(Figs.l-4),themotion 
of the point .lf+ with coordinates B (z'), IL = II+ (z') and the corresponding motion of the point 
.I[_ with coordinates E (2'). n =L II (z').The coordinates of the points :I[+ and .I/_ coincide on the _ 
line L,'. Since the points AII+ and >lf_ move in the opposite directions, it follows that, as 
the coordinate ;c increases, the points will move along the different (upper and lower rela- 

tive to the line L,") branches of the phase curve. Since the line L," is intersected only by 
the curves belonging to s, and S,, it follows that the points 211, and ‘tI_move in the opposite 
directions along one and the same curve of the same family (s, or s:,). From (3.3) it follows 
that the relations Q 0 and I!~ j: 1:’ may hold only simultaneously so that the abscis- 

sas of the points of intersection of the curve belonging to “j, with Lz' and the 
axis II+ mm: 0 are the same. Similarly, for a motion of the point J1, along the curve belonging 

to S,(s,) in the phase plane we have the corresponding motion of.I/_along the corresponding 

curve S,(S,). determined by (3.3). 

5. Boundary conditions. Problem of electrolytic cell with flat electrodes. 
A concrete physical problemwhich canbe solved with help of the integral curves obtained in 

Sect.4, is defined by setting out its boundary conditions. 

Boundary conditions for the concentrations. We shall assume that the positive 

and negative ions are transformed into neutral molecules at the solid-electrolyte interface. 

The number of ions of the a-type reacting on a unit surface in unit time is proportional to 

the concentration of ions in the power of 1,. The proportionality coefficient k, can, gen- 

erally speaking, depend on the temeprature T, electric field E and the properties of the 

solid-electrolyte pair. To simplify the problem we shall not consider the other type reac- 

tions. The surface of solid may serve as the source of ions, and the ion flux densities are 

determined with help of j_,. The boundary conditions for a stationary process atthesolid- 
electrolyte interface can be written in the form (ja * is given by (1.2) and II is the outer 
normal to the boundary) 

j&, = jaem (T, E) -t hy~tt’~ (5.1) 

In the caseofconducting boundaries we must, e.g. specify the potentials of all bodies. 

Electrolytic cell with flat electrodes. We consider the problem of distribution 

of electro-hydrodynamic parameters of the electrolyte solution in a cell with flat electrodes, 

the coordinates of which are z* = 0 (anode) and x* = L (cathode). A potential difference 

Aq = (p (0) - ‘p CL)> 0 is applied across the electrodes. The distribution of parametersbetween 

the electrodes outside the boundary diffusion layers is described by (3.3), (3.4), the para- 

meter 6 = s&cd<1 , and functions sought are assumed to dependent on a single Cartesian CO- 

ordinate z *. We use the distance between the electrodes L and applied field E, = Av'L as 
the characteristic dimensions for reducing the system of equations to its dimensionless form. 

To solve the equations (3.3) and (3.4) we must transfer the boundary conditions (5.1) to the 

boundaried of the diffusion layers away from the electrodes, and the number of boundary con- 

ditions must be reduced by a number equal tothe decrease in the order of the system (2-l), 

(2.2). Let us consider the case when emission currents are absent, the anode current is 

determined by the negative ions and cathode current by the positive ions. The boundary con- 

ditions (5.1) can now be written in dimensionless form as (j, -: j\- ~-- j; E,, ~z E, XI R; j, -z j_ -_ 

E 
v 

E, 7 0): 

j+ = - 6/,+ 2 -1 n+h,.E = 0, (5.2) 

j_ = j = - hD_ G -I- It_b_E = ,\_?Z’_, ,x = 0 

j, = j = - 611,~ + n+b+E = :\,n: (5.3) 

j_ = - fill_ % -I n_b_E = 0. x=1 

Replacing in (3.3), (3.4) the independent variable thus X := x6-i and multiplying the result- 

ing equations by 6, we neglect terms of the order of 6 compared with terms of the order of 

unity. The resulting system of equations describing the behavior of the inner solutionof zero 
order with respect to 6 has the integralj, (')(X)- const (the symbols (i) and (e) denote the para- 
meters of the inner and outer solution respectively). Using the integral obtained, the first 

boundary condition (5.2_) and the condition of asymptotic matching, we write the following 

system of equations: 
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jy' (X) z j, (0) = 0; lim jy’ (x) = lim jy’ (Xl = O 
x-ii x--r 

Thus the boundary condition on the left electrode will have the form 

j+@) (0) = n+b+El,=0 = 0 (5.4) 

Similarly for IC = 1 we obtain 

n_b_E Ix+ = 0 (5.5) 

Studying the behavior of the integral curves on the phase plane in Figs.l-4 we see, that the 

latter two relations hold only when 

n+ (0) = n_ (1) = 0 (5.6) 

Indeed, if we assume that (5.1) implies E (0) = 0 , then the phase curve corresponding to such 

a solution should emerge from the point on the ray (n+,E]E= 0, I?+ > O]. However, the direction 

of the motion along the phase curves is such, that no phase curve exists which emerges from 

any point lying on this ray, into the region where n+>O, E>O. Thus the relations (5.6) re- 

present the boundary conditions for the concentrations for the system of equations outsidethe 

diffusion layers. 

Assuming that the potential at the electrode-solution interface is continuous, we can 

write the boundary conditions for the electric field strength in the form 

iE(L+k=I 
” 

(5.7) 

In order to rewrite this boundary condition for the equations (3.3), (3.4), we must obtainthe 

estimates for the integrals of E(m)over the intervals [0,6] and II - 6, 11. It can be shown 

that when the following conditions hold: 

then the integrals are small. It follows therefore that the potential drop across the bound- 

ary diffusion layers can be neglected in the zero approximation with respect to 6. In this 

case the relation (5.7) will continue to represent a boundary condition fortheelectricfield 

strength for (3.3), (3.4). We see that at sufficiently high rates of electro-chemical reac- 

tions at the electrodes the relations (5.8) always hold. When I, = I_ = 1, the conditions 

(5.8) become particularly simple 

Thus the solution of the problem of electrolytic cell with flat electrodes reducestothat 

of solving the equations (3.3), (3.4) with boundary conditions (5.6), (5.7). The phase curve 

in the plane En+ corresponding to the solution of the problem in question must emergy from a 

some point on the OE axis where n+=o, and terminate at the line L,? where n+= j/E, i.e. 

n_ = 0. Thus the solution in the plane En+, and hence in En_, must belong to s,. 

Let us assume that E< 1. Here the curves belonging to family S, and describing the 

solutions of the system of equations on the segment [O,l]m must pass near the singularity N. 

This, together with Sect.4, determines the type of behavior of the parameters in question in- 

side the electrolytic cell, but outside the diffusion layers. Outside the narrow layers with 

thickness of the order of 5 adjacent to the diffusion layers, the concentration n, = n_ , and 
the medium is quasineutral. The electric field strength and ionic concentrations are connected 

by the formula (2.5) expressing the condition of electrochemical equilibrium. Since the curve 
on the phase plane En, corresponding to the solution of the problem in question passes near 
the point N, it follows that the value of electric field strength outside the layer of thick- 
ness of the order of E is connected with the constant j, i.e. with the dimensionless current, 
by the relation (4.5). 

In the case of a<1 the phase curves of the family move almost vertically, therefore 

the change in the electric field strength outside the diffusion layers can be neglected with 
the accuracy to terms of order cc. In this case, assuming that according to the boundary con- 
dition (5.7) E r" 1 and writing (4.5) in the dimensional form, we obtain the following volt- 
ampere characteristic of the cell: 
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